Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What happens to the volume of a cone when the height is doubled ?


Sagot :

if the value of the volume of the cone let says the radius is 1 and the height is 2. Then the volume is 2pi. If the height is now 4, then it just doubled.

Answer-

When the height is doubled, the volume of the cone also gets doubled.

Solution-

Volume of a cone is given by,

[tex]V=\dfrac{\pi \times r^2\times h}{3}[/tex]

Where,

V = Volume,

r = radius of the base,

h = height of the cone.

Let, height at first be x, then volume would be,

[tex]V_1=\dfrac{\pi \times r^2\times x}{3}[/tex]

As the height is doubled, so height = 2x, then volume would be,

[tex]V_2=\dfrac{\pi \times r^2\times 2x}{3}\\\\=2\times \dfrac{\pi \times r^2\times x}{3}\\\\=2\times V_1[/tex]

Therefore, when the height is doubled, the volume of the cone also gets doubled.