Answered

Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

SOLVING SYSTEMS OF EQUATIONS BY SUBSTITUTION.
x+3y=12
x-y=8


Sagot :

luana
[tex] \left \{ {{x+3y=12} \atop {x-y=8}} \right. \\\\ \left \{ {{x=12-3y} \atop {x=8+y}} \right. \\\\ 12-3y=8+y\ \ \ | subtract\ y\\\\ -4y+12=8\ \ \ | subtract\ 12\\\\ -4y=-4\ \ \ | divide\ by\ -4\\\\ y=1\\\\ x=8+y=8+1=9[/tex]
First, we need to find any value for x or y (I will do x)
So, taking x-y=8, if you add y, you get x=8+y. Even though this is not a real integer, we can still substitute it into the other equation. So, because x = 8+y, then, 8+y + 3y = 12. Then solve it by adding like terms, 8+4y=12, then subtract 8, 4y=4, and last, divide by four. y=1. However, we are not done yet, by substituting the value of y into the second equation, we get x-1=8. Add one and x=9.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.