Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
This forms an arithmetic sequence, where the first term = 1, common difference = 1, and number of terms = n.
The formula for the sum of an arithmetic sequence is
[tex]S_{n} = \frac{1}{2}n(2a + (n - 1)d) [/tex]
Where a = the first term and d = the common difference.
We want the sum to be at least $50, so
[tex]50 \leq \frac{1}{2}n(2a + (n - 1)d) [/tex]
Substituting in a and d
[tex]50 \leq \frac{1}{2}n(2(1) + (n - 1)(1)) [/tex]
Rearranging
[tex]50 \leq \frac{1}{2}n(2 + (n - 1)) [/tex]
[tex]50 \leq \frac{1}{2}n(1 + n) [/tex]
[tex]100 \leq n(1 + n) [/tex]
[tex]100 \leq n^2 + n[/tex]
[tex]0 \leq n^2 + n - 100 [/tex]
[tex]\text{Let } n^2 + n -100 = 0[/tex]
[tex]n = \frac{-1 \pm \sqrt{1-4(1)(-100)}}{2} [/tex]
[tex]n = \frac{-1 \pm \sqrt{401}}{2} [/tex]
[tex]n \geq 0 \implies n = \frac{-1 + \sqrt{401}}{2} [/tex]
[tex]n \approx 9.51[/tex]
So it will take 9.51 weeks, or 10 weeks to the nearest week.
The formula for the sum of an arithmetic sequence is
[tex]S_{n} = \frac{1}{2}n(2a + (n - 1)d) [/tex]
Where a = the first term and d = the common difference.
We want the sum to be at least $50, so
[tex]50 \leq \frac{1}{2}n(2a + (n - 1)d) [/tex]
Substituting in a and d
[tex]50 \leq \frac{1}{2}n(2(1) + (n - 1)(1)) [/tex]
Rearranging
[tex]50 \leq \frac{1}{2}n(2 + (n - 1)) [/tex]
[tex]50 \leq \frac{1}{2}n(1 + n) [/tex]
[tex]100 \leq n(1 + n) [/tex]
[tex]100 \leq n^2 + n[/tex]
[tex]0 \leq n^2 + n - 100 [/tex]
[tex]\text{Let } n^2 + n -100 = 0[/tex]
[tex]n = \frac{-1 \pm \sqrt{1-4(1)(-100)}}{2} [/tex]
[tex]n = \frac{-1 \pm \sqrt{401}}{2} [/tex]
[tex]n \geq 0 \implies n = \frac{-1 + \sqrt{401}}{2} [/tex]
[tex]n \approx 9.51[/tex]
So it will take 9.51 weeks, or 10 weeks to the nearest week.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.