Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
This forms an arithmetic sequence, where the first term = 1, common difference = 1, and number of terms = n.
The formula for the sum of an arithmetic sequence is
[tex]S_{n} = \frac{1}{2}n(2a + (n - 1)d) [/tex]
Where a = the first term and d = the common difference.
We want the sum to be at least $50, so
[tex]50 \leq \frac{1}{2}n(2a + (n - 1)d) [/tex]
Substituting in a and d
[tex]50 \leq \frac{1}{2}n(2(1) + (n - 1)(1)) [/tex]
Rearranging
[tex]50 \leq \frac{1}{2}n(2 + (n - 1)) [/tex]
[tex]50 \leq \frac{1}{2}n(1 + n) [/tex]
[tex]100 \leq n(1 + n) [/tex]
[tex]100 \leq n^2 + n[/tex]
[tex]0 \leq n^2 + n - 100 [/tex]
[tex]\text{Let } n^2 + n -100 = 0[/tex]
[tex]n = \frac{-1 \pm \sqrt{1-4(1)(-100)}}{2} [/tex]
[tex]n = \frac{-1 \pm \sqrt{401}}{2} [/tex]
[tex]n \geq 0 \implies n = \frac{-1 + \sqrt{401}}{2} [/tex]
[tex]n \approx 9.51[/tex]
So it will take 9.51 weeks, or 10 weeks to the nearest week.
The formula for the sum of an arithmetic sequence is
[tex]S_{n} = \frac{1}{2}n(2a + (n - 1)d) [/tex]
Where a = the first term and d = the common difference.
We want the sum to be at least $50, so
[tex]50 \leq \frac{1}{2}n(2a + (n - 1)d) [/tex]
Substituting in a and d
[tex]50 \leq \frac{1}{2}n(2(1) + (n - 1)(1)) [/tex]
Rearranging
[tex]50 \leq \frac{1}{2}n(2 + (n - 1)) [/tex]
[tex]50 \leq \frac{1}{2}n(1 + n) [/tex]
[tex]100 \leq n(1 + n) [/tex]
[tex]100 \leq n^2 + n[/tex]
[tex]0 \leq n^2 + n - 100 [/tex]
[tex]\text{Let } n^2 + n -100 = 0[/tex]
[tex]n = \frac{-1 \pm \sqrt{1-4(1)(-100)}}{2} [/tex]
[tex]n = \frac{-1 \pm \sqrt{401}}{2} [/tex]
[tex]n \geq 0 \implies n = \frac{-1 + \sqrt{401}}{2} [/tex]
[tex]n \approx 9.51[/tex]
So it will take 9.51 weeks, or 10 weeks to the nearest week.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.