Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
[tex]\text{Let } f(x) = x^3 + 2x^2 + kx - 6[/tex]
As (x + 1) is a factor, it follows that
[tex]f(-1) = 0[/tex]
[tex]\implies (-1)^3 + 2(-1)^2 + k(-1) - 6 = 0[/tex]
[tex]-1 + 2 -k - 6 = 0[/tex]
[tex]-k - 5 = 0[/tex]
[tex]k = -5[/tex]
[tex]\implies f(x) = x^3 + 2x^2 - 5x - 6[/tex]
Now we can use long division to find what is left of f(x) after it is divided by (x + 1). (Apologies, this is the best way I can represent long division on Brainly at this current time - I hope it's clear)
x^2 + x - 6
x + 1 ( x^3 + 2x^2 - 5x - 6
x^3 + x^2
x^2 - 5x
x^2 + x
-6x - 6
-6x - 6
0
So the remainder when f(x) is divided by (x + 1) is
[tex]x^2 + x - 6[/tex]
Factorising this we get
[tex](x + 3)(x - 2)[/tex]
So the three factors of f(x) are (x + 1), (x + 3) and (x - 2).
As (x + 1) is a factor, it follows that
[tex]f(-1) = 0[/tex]
[tex]\implies (-1)^3 + 2(-1)^2 + k(-1) - 6 = 0[/tex]
[tex]-1 + 2 -k - 6 = 0[/tex]
[tex]-k - 5 = 0[/tex]
[tex]k = -5[/tex]
[tex]\implies f(x) = x^3 + 2x^2 - 5x - 6[/tex]
Now we can use long division to find what is left of f(x) after it is divided by (x + 1). (Apologies, this is the best way I can represent long division on Brainly at this current time - I hope it's clear)
x^2 + x - 6
x + 1 ( x^3 + 2x^2 - 5x - 6
x^3 + x^2
x^2 - 5x
x^2 + x
-6x - 6
-6x - 6
0
So the remainder when f(x) is divided by (x + 1) is
[tex]x^2 + x - 6[/tex]
Factorising this we get
[tex](x + 3)(x - 2)[/tex]
So the three factors of f(x) are (x + 1), (x + 3) and (x - 2).
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.