Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]n(n^2+11)=\\n(n^2-1+12)=\\
n(n^2-1)+12n=\\
(n-1)n(n+1)+12n[/tex]
[tex](n-1)n(n+1)[/tex] is the product of 3 consecutive natural numbers, so it has be to divisible by 3.
[tex]12n[/tex] is also divisible by 3 because 12 is divisible by 3.
If both elements of the sum are divisible by 3 so the sum itself is divisible by 3 as well.
[tex](n-1)n(n+1)[/tex] is the product of 3 consecutive natural numbers, so it has be to divisible by 3.
[tex]12n[/tex] is also divisible by 3 because 12 is divisible by 3.
If both elements of the sum are divisible by 3 so the sum itself is divisible by 3 as well.
@Konrad509's answer was fantastic.
What you first need to know is this. 3 consecutive natural numbers multiplied by each other, for instance: (1*2*3) or (2*3*4) or (3*4*5) or (4*5*(2*3)) can be described using the abstract expression:
(n-1)n(n+1)
-------------
Now:
A=n(n²+11),
and:
n(n²+11)
=n(n²-1+12)
=n³-n+12n
=n(n²-1)+12n
=n(n+1)(n-1)+12n
=(n-1)n(n+1)+(4*3)n
-------------------------
So:
A=(n-1)n(n+1)+(4*3)n
Therefore, A is divisible by 3.
What you first need to know is this. 3 consecutive natural numbers multiplied by each other, for instance: (1*2*3) or (2*3*4) or (3*4*5) or (4*5*(2*3)) can be described using the abstract expression:
(n-1)n(n+1)
-------------
Now:
A=n(n²+11),
and:
n(n²+11)
=n(n²-1+12)
=n³-n+12n
=n(n²-1)+12n
=n(n+1)(n-1)+12n
=(n-1)n(n+1)+(4*3)n
-------------------------
So:
A=(n-1)n(n+1)+(4*3)n
Therefore, A is divisible by 3.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.