Answered

Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

n ∈ lN
We set A= n(n²+11)
Show that A is divisible by 3
( n is natural number )
please try to help me in this i need it tomorrow plz...


Sagot :

[tex]n(n^2+11)=\\n(n^2-1+12)=\\ n(n^2-1)+12n=\\ (n-1)n(n+1)+12n[/tex]

[tex](n-1)n(n+1)[/tex] is the product of 3 consecutive natural numbers, so it has be to divisible by 3.

[tex]12n[/tex] is also divisible by 3 because 12 is divisible by 3.

If both elements of the sum are divisible by 3 so the sum itself is divisible by 3 as well.
@Konrad509's answer was fantastic. 

What you first need to know is this. 3 consecutive natural numbers multiplied by each other, for instance: (1*2*3) or (2*3*4) or (3*4*5) or (4*5*(2*3)) can be described using the abstract expression:

(n-1)n(n+1)

-------------

Now:

A=n(n²+11),

and:

n(n²+11)

=n(n²-1+12)

=n³-n+12n

=n(n²-1)+12n

=n(n+1)(n-1)+12n

=(n-1)n(n+1)+(4*3)n

-------------------------

So:

A=(n-1)n(n+1)+(4*3)n

Therefore, A is divisible by 3.