Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Determine if the sequence An is convergent. If the sequence is convergent, state its limit. If the series diverges, mark the sequence as either Divergent or Divergent because the sequence is unbounded (or -) S13 18 23 28 33 8 5n An 5 8 11 14 17 2 3n Convergent sequence whose limit is O Divergent O Divergent because the sequence is unbounded (or - 00)

Sagot :

Answer:

The answer is "[tex]\frac{5}{3}[/tex]"

Step-by-step explanation:

[tex]A_n={\frac{13}{5},\frac{18}{8},\frac{23}{11},\frac{28}{14},\frac{33}{17},..................\frac{8+5n}{2+3n}}\\\\[/tex]

[tex]\to A_n=\frac{8+5n}{2+3n}\\\\\to \lim_{n \to \infty} A_n = \lim_{n \to \infty} \ \frac{8+5n}{2+3n}= \lim_{n \to \infty} \ \frac{\frac{8}{n}+5}{\frac{2}{n}+3}=\frac{0+5}{0+3}=\frac{5}{3}[/tex]

In this sequence An is convergents where limits are [tex]\frac{5}{3}[/tex].