Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

A community plans to build a facility to convert solar radiation to electrical power. The community requires 2.20 MW of power, and the system to be installed has an efficiency of 30.0% (that is, 30.0% of the solar energy incident on the surface is converted to useful energy that can power the community). Assuming sunlight has a constant intensity of 1 020 W/m2, what must be the effective area of a perfectly absorbing surface used in such an installation

Sagot :

Answer:

The answer is "[tex]\bold{7.18 \times 10^3 \ m^2}[/tex]".

Explanation:

The efficiency system:

[tex]\eta =\frac{P_{req}}{P} \times 10\\\\P =\frac{P_{req}}{\eta} \times 10\\\\[/tex]

   [tex]=(\frac{2.20 \times 10^6 \ W}{30})\times 100\\\\=(\frac{220 \times 10^6 \ W}{30})\\\\=(\frac{22 \times 10^6 \ W}{3})\\\\=7.33 \times 10^6 \ W[/tex]  

Using formula:

[tex]A=\frac{P}{I}[/tex]

Effective area:

[tex]A= \frac{7.33 \times 10^6 \ W}{1020\ \frac{W}{m^2}}\\\\[/tex]

   [tex]=\frac{7.33 \times 10^6 }{1020}\ m^2 \\\\ =0.0071862 \times 10^6 \ m^2 \\\\=7.1862 \times 10^3 \ m^2 \\\\[/tex]  

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.