Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Incomplete question. However, I answered from a general research perspective.
Explanation:
Note, the term sample used in statistical research refers to subjects or persons carefully selected (using a particular sampling method/type ) to represent the target population.
A randomly selected sample could be done as either:
- Simple Random Sampling
- Stratified Random Sampling
- Cluster Random Sampling.
- Systematic Random Sampling.
Using any of the above sampling methods could result in 70% of the population being from low-income families as this is a matter of chance. Hence, we can agree with the research results.
Using the z-distribution, it is found that since the test statistic is less than the critical value for the left-tailed test, there is enough evidence to conclude that the children were not randomly selected.
At the null hypothesis, we test if they were really randomly selected, that is, the proportion is of 80%:
[tex]H_0: p = 0.8[/tex]
At the alternative hypothesis, we test if they were not randomly selected, that is, the proportion is of less than 80%.
[tex]H_1: p < 0.8[/tex]
The test statistic is given by:
[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]
In which:
- [tex]\overline{p}[/tex] is the sample proportion.
- p is the proportion tested at the null hypothesis.
- n is the sample size.
For this problem, the parameters are:
[tex]p = 0.8, n = 150, \overline{p} = 0.7[/tex]
Then, the value of the test statistic is:
[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]
[tex]z = \frac{0.7 - 0.8}{\sqrt{\frac{0.8(0.2)}{150}}}[/tex]
[tex]z = -3.06[/tex]
The critical value for a left-tailed test, as we are testing if the proportion is less than a value, with a significance level of 0.05, is of [tex]z^{\ast} = -1.645[/tex].
Since the test statistic is less than the critical value for the left-tailed test, there is enough evidence to conclude that the children were not randomly selected.
A similar problem is given at https://brainly.com/question/24166849
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.