Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
0.706
Explanation:
Since the other astronaut measures a longer time, this is a time dilation problem. So, our equation for time dilation is given by
T = T₀/√(1 - β²) where T = period on passing space ship = 31.87 s, T₀ = period on other space vehicle = proper time = 22.58 s and β = relative velocity of between the two observers.
T = T₀/√(1 - β²)
√(1 - β²) = T₀/T
squaring both sides, we have
[√(1 - β²)]² = (T₀/T)²
1 - β² = (T₀/T)²
β² = 1 - (T₀/T)²
taking square root of both sides, we have
√β² = √[1 - (T₀/T)²]
β = √[1 - (T₀/T)²]
substituting the values of the variables into the equation, we have
β = √[1 - (22.58 s/31.87 s)²]
β = √[1 - (0.7085)²]
β = √[1 - 0.502]
β = √0.498
β = 0.706
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.