Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Please help !
Find a.
Round to the nearest tenth:
27 cm
102
28
a = [? ]cm
Law of Sines: sin A
sin C
sin B
b
a
A=?


Please Help Find A Round To The Nearest Tenth 27 Cm 102 28 A Cm Law Of Sines Sin A Sin C Sin B B A A class=

Sagot :

Given:

In the given triangle the measure of two angles are 102 degree and 28 degrees and the sides of the triangle are a, 27 cm, c.

To find:

The value of a.

Solution:

Let the given triangle be ABC, such that,

[tex]m\angle B=28^\circ[/tex]

[tex]m\angle C=102^\circ[/tex]

[tex]b=27\ cm[/tex]

Using angle sum property of triangles, we get

[tex]m\angle A+m\angle B+m\angle C=180^\circ[/tex]

[tex]m\angle A+28^\circ+102^\circ=180^\circ[/tex]

[tex]m\angle A=180^\circ-28^\circ-102^\circ[/tex]

[tex]m\angle A=50^\circ[/tex]

According to the Law of Sines:

[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}[/tex]

[tex]\dfrac{\sin 50^\circ }{a}=\dfrac{\sin 28^\circ }{27}[/tex]

[tex]\dfrac{27\times \sin 50^\circ }{\sin 28^\circ}=a[/tex]

[tex]\dfrac{27\times \sin 50^\circ }{\sin 28^\circ}=a[/tex]

[tex]a\approx 44.06[/tex]

Therefore, the value of a is about 44.06 cm.