At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
μ = tan θ
Explanation:
For this exercise let's use the translational equilibrium condition.
Let's set a datum with the x axis parallel to the plane and the y axis perpendicular to the plane.
Let's break down the weight of the block
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
The acrobat is vertically so his weight decomposition is
sin θ = = wₐₓ / wₐ
cos θ = wₐ_y / wₐ
wₐₓ = wₐ sin θ
wₐ_y = wₐ cos θ
let's write the equilibrium equations
Y axis
N- W_y - wₐ_y = 0
N = W cos θ + wₐ cos θ
X axis
Wₓ + wₐ_x - fr = 0
fr = W sin θ + wₐ sin θ
the friction force has the formula
fr = μ N
fr = μ (W cos θ + wₐ cos θ)
we substitute
μ (Mg cos θ + mg cos θ) = Mgsin θ + mg sin θ
μ = [tex]\frac{(M +m) \ sin \ \theta }{(M +m) \ cos \ \theta }[/tex]
μ = tan θ
this is the minimum value of the coefficient of static friction for which the system is in equilibrium.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.