Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Suppose that the lifetimes of a certain kind of light bulb are normally distributed with a standard deviation if 110 hours. If exactly 95% of the bulbs die before 920 hours, find the mean lifetime if the bulbs

Sagot :

Answer:

The mean life time of the bulbs is approximately 739 hours

Step-by-step explanation:

Here, we want to calculate the mean life time

From the question, 95% of the bulbs die before 920 hours

What this mean is that the probability that a bulb will die before 920 hours is 95% = 95/100 = 0.95

Now, we need the z-score that is exactly equal to this value

Using the standard normal distribution table, the z-score corresponding to this probability value is 1.645

Mathematically;

z-score = (x-mean)/SD

In this case, x is 920, SD is standard deviation which is 920 hours

thus, we have it that;

1.645 = (920-mean)/110

110(1.645) = 920 - mean

180.95 = 920 - mean

mean = 920- 180.95

mean = 739.05

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.