At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
a) 0.27 = 27% probability that a randomly chosen card holder has annual income $20,000 or less.
b) 0.778 = 77.8% probability that (s)he carries a balance
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
a) What is the probability that a randomly chosen card holder has annual income $20,000 or less?
20% of 30%(carry no balance).
30% of 70%(carry balance). So
[tex]P = 0.2*0.3 + 0.3*0.7 = 0.06 + 0.21 = 0.27[/tex]
0.27 = 27% probability that a randomly chosen card holder has annual income $20,000 or less.
b) If this card holder has an annual income that is $20,000 or less, what is the probability that (s)he carries a balance?
Conditional probability.
Event A: Annual income of $20,000 or less.
Event B: Carries a balance.
0.27 = 27% probability that a randomly chosen card holder has annual income $20,000 or less
This means that [tex]P(A) = 0.27[/tex]
Probability of a income of $20,000 or less and balance.
30% of 70%, so:
[tex]P(A \cap B) = 0.3*0.7 = 0.21[/tex]
The probability is:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.21}{0.27} = 0.778[/tex]
0.778 = 77.8% probability that (s)he carries a balance
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.