Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
a-The probability that item A is discovered as a defective item by method 1 is 0.4
b. The probability that item A is discovered as a defective item by method 2 is 0.4
c-As the probability of detecting A as a defective item is same for the two methods, thus it can be stated that each of the methods is equally effective.
Step-by-step explanation:
a-
The first method where the inspector chooses two of the five items randomly, so the total pairs are as given below:
[tex]N_{total}=n(S_{total})\\N_{total}=n(\{AB,AC,AD,AE,BC,BD,BE,CD,CE,DE\})\\[/tex]
As the total experiments in the overall space is 10 so [tex]N_{total}[/tex] is 10.
As A comes in 4 of these experiments, thus the value of [tex]N_{A}[/tex] is 4.
So the Probability of A is given as
[tex]P(A)=\dfrac{N_{A}}{N_{total}}\\P(A)=\dfrac{4}{10}\\P(A)=0.4[/tex]
The probability that item A is discovered as a defective item by method 1 is 0.4.
b-
Now in order to find the probability of finding item A as defective by method 2, first consider the probability of not finding item A as defective.
This is given as
[tex]P(A)=1-P(A)'[/tex]
Here P(A)' is given as
[tex]P(A)'=P(A)'_{1^{st}}\times P(A)'_{2^{nd}}[/tex]
Here
P(A)'_1st is the probability that the first inspector fails to detect A as a defective item which is given as
[tex]P(A)'_{1^{st}}=1-\dfrac{1}{N_{total\ items}}[/tex]
Here N_total items is 5. so the equation becomes
[tex]P(A)'_{1^{st}}=1-\dfrac{1}{N_{total\ items}}\\P(A)'_{1^{st}}=1-\dfrac{1}{5}\\P(A)'_{1^{st}}=\dfrac{5-1}{5}\\P(A)'_{1^{st}}=\dfrac{4}{5}[/tex]
Similarly
P(A)'_2nd is the probability that the second inspector fails to detect A as a defective item which is given as
[tex]P(A)'_{2^{nd}}=1-\dfrac{1}{N_{total\ items}}[/tex]
Here N_total items is 4 as 1 item has already been checked. so the equation becomes
[tex]P(A)'_{2^{nd}}=1-\dfrac{1}{N_{total\ items}}\\P(A)'_{2^{nd}}=1-\dfrac{1}{4}\\P(A)'_{2^{nd}}=\dfrac{4-1}{4}\\P(A)'_{2^{nd}}=\dfrac{3}{4}[/tex]
So the main equation becomes
[tex]P(A)=1-P(A)'\\P(A)=1-(P(A)'_{1^{st}}\times P(A)'_{2^{nd}})[/tex]
Substituting the values give
[tex]P(A)=1-(P(A)'_{1^{st}}\times P(A)'_{2^{nd}})\\P(A)=1-(\dfrac{4}{5}\times \dfrac{3}{4})\\P(A)=1-\dfrac{3}{5}\\P(A)=\dfrac{5-3}{5}\\P(A)=\dfrac{2}{5}\\P(A)=0.4[/tex]
The probability that item A is discovered as a defective item by method 2 is 0.4.
c-
As evident from the above, that the value of probabilities for both the methods is same therefore the overall effectiveness of each of the methods is same.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.