Answer:
the decay of uranium ending in lead, of potassium (40K) that becomes argon, the decay of rubidium
Explanation:
For the radioactive dating process, a material is needed that has a known average life time and that we can know the amount of material at a given moment,
In the case of carbon 14 (14C), living beings stop capturing it from the air and plants when they die, so knowing the amount they currently have, it is possible to calculate the time in which they stopped absorbing, but the life time average is 5730 years, the maximum time that can be used is up to about 10 average visa times
To analyze extra samples have high half-life times
* the decay of uranium ending in lead
* the decay of potassium (40K) that becomes argon T1 / 2 = 1,251 10⁹ years
* the decay of rubidium (87Ru) which becomes strontium T1 / 2 = 4.92 10¹⁰ years