Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
9514 1404 393
Answer:
x ∈ {-1/2, 1, 2-√3, 2+√3}
Step-by-step explanation:
The given zeros mean that one of the quadratic factors of the given polynomial is ...
(x -2)^ -3 = x^2 -4x +1
When that is factored out (see first attachment), the remaining quadratic is ...
2x^2 -x -1
This can be factored as ...
= (2x +1)(x -1)
which has roots that make these factors zero: x = -1/2, x = 1.
So, all of the zeros of the given polynomial are ...
-1/2, 1, 2-√3, 2+√3 . . . all zeros
__
A graphing calculator can often point to the zeros of the function quite nicely.
_____
Additional comments
When p is a zero of a polynomial, (x-p) is a factor of it. The given zeros mean that factors are (x-2-√3) and (x-2+√3). The product of these factors is the difference of the squares (x-2)^2 and (√3)^2, so is (x -2)^2 -3.
Using the pattern for the square of a binomial, we see this is ...
(x-2)^2 = x^2 -2·2x +2^2 = x^2 -4x +4
The product of the given factor is then 3 subtracted from this square. The given zeros mean there is a quadratic factor of ...
(x-2-√3)(x-2+√3) = (x-2)^2 -3 = x^2 -4x +4 -3 = x^2 -4x +1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.