Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The probability that a student chosen randomly from the class has a sister, in a class of 25 students, is 2/5.
What is the addition rule of probability for two events?
For two events A and B, we have:
Probability that event A or B occurs = Probability that event A occurs + Probability that event B occurs - Probability that both the event A and B occur simultaneously.
This can be written symbolically as:
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]
For three events, A, B and C:
[tex]P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A\cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)[/tex]
In a class of 25 students, 16 have a brother and 10 have a sister. There are 6 students who have a brother and a sister.
Let A is event of a student having a brother and B is event of a student having a sister.
The probability of event A is,
[tex]P(A)=\dfrac{16}{25}[/tex]
The probability of event B is,
[tex]P(B)=\dfrac{10}{25}\\P(B)=\dfrac{2}{5}[/tex]
The probability of occurrence of both event A and B together,
[tex]P(A\cap B)=\dfrac{6}{25}[/tex]
Thus, the probability that a student chosen randomly from the class has a sister, in a class of 25 students, is 2/5.
Learn more about probability here:
brainly.com/question/1210781
#SPJ2
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.