Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The ladder will reach a height of 9.8 foot
Step-by-step explanation:
Given
Initial Position
[tex]L = 25ft[/tex] --- Length of the ladder
[tex]h = 15ft[/tex] --- height against the wall
New position
[tex]L = 25ft[/tex] --- Length of the ladder
[tex]B = 3ft[/tex] --- 3 feet farther from the wall
Required
Determine the new height the ladder will reach
The question is illustrated using the attached image.
Where
[tex]\triangle ABC[/tex] represents the initial position of the ladder
[tex]\triangle DBE[/tex] represents the new position of the ladder
The new height is represented with BD
Using Pythagoras theorem on [tex]\triangle DBE[/tex]
[tex]DE^2 = BE^2 + BD^2[/tex]
[tex]BE = BC + CE = 20 + 3 = 23[/tex]
[tex]BD = x[/tex]
[tex]DE =25[/tex] --- length of the ladder
So, the expression becomes
[tex]25^2 = 23^2 + x^2[/tex]
[tex]625 = 529 + x^2[/tex]
Collect like terms
[tex]x^2 = -529 + 625[/tex]
[tex]x^2 = 96[/tex]
Take positive square roots of both sides
[tex]x = \sqrt{96[/tex]
[tex]x = 9.8ft[/tex] --- approximated
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.