Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Gavin deposited money into his savings account that is compounded annually at an interest rate of 9%. Gavin thought the equivalent quarterly interest rate would be 2.25%. Is Gavin correct? If he is, explain why. If he is not correct, state what the equivalent quarterly interest rate is and show how you got your answer.

Sagot :

Answer:

The equivalent rate is of 0.093 = 9.3% a year. Gavin is wrong, because he applied the wrong formula, its not just dividing the interest rate r by the number of compoundings n, it is [tex]E = (1 + \frac{r}{n})^{n} - 1[/tex]

Step-by-step explanation:

Equivalent interest rate:

The equivalent interest rate for an amount compounded n times during a year is given by:

[tex]E = (1 + \frac{r}{n})^{n} - 1[/tex]

In which r is the interest rate and n is the number of compoundings during an year.

Compounded annually at an interest rate of 9%

This means that [tex]r = 0.09[/tex]

Compounded quarterly:

This means that [tex]n = 4[/tex]

Equivalent rate:

[tex]E = (1 + \frac{0.09}{4})^{4} - 1 = 0.093[/tex]

The equivalent rate is of 0.093 = 9.3% a year. Gavin is wrong, because he applied the wrong formula, its not just dividing the interest rate r by the number of compoundings n, it is [tex]E = (1 + \frac{r}{n})^{n} - 1[/tex]

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.