Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.370 mm wide. The diffraction pattern is observed on a screen 3.70 m away. Define the width of a bright fringe as the distance between the minima on either side. You may want to review (Page) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Single-slit diffraction. Part A What is the width of the central bright fringe

Sagot :

Answer:

Δx = 6.33 x 10⁻³ m = 6.33 mm

Explanation:

We can use the Young's Double Slit Experiment Formula here:

[tex]\Delta x = \frac{\lambda L}{d}\\\\[/tex]

where,

Δx = distance between consecutive dark fringes = width of central bright fringe = ?

λ = wavelength of light = 633 nm = 6.33 x 10⁻⁷ m

L = distance between screen and slit = 3.7 m

d = slit width = 0.37 mm = 3.7 x 10⁻⁴ m

Therefore,

[tex]\Delta x = \frac{(6.33\ x\ 10^{-7}\ m)(3.7\ m)}{3.7\ x \ 10^{-4}\ m}[/tex]

Δx = 6.33 x 10⁻³ m = 6.33 mm

We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.