Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
0.433
Step-by-step explanation:
From the given information;
Let represent Urn 1 to be Q₁ ;
Urn 2 to be Q₂
and the event that a blue token is taken should be R
SO,
Given that:
Urn 1 comprises of 4 blue token and 9 red tokens,
Then, the probability of having a blue token | urn 1 picked is:
[tex]P(R|Q_1) = \dfrac{4}{4+9}[/tex]
[tex]= \dfrac{4}{13}[/tex]
Urn 2 comprises of 12 blue token and 5 red tokens;
Thus [tex]P(R| Q_2) = \dfrac{12}{12+5}[/tex]
[tex]=\dfrac{12}{17}[/tex]
SO, if two coins are flipped, the probability of having two heads = [tex]\dfrac{1}{4}[/tex]
(since (H,H) is the only way)
Also, the probability of having at least one single tail = [tex]\dfrac{3}{4}[/tex]
(since (H,T), (T,H), (T,T) are the only possible outcome)
Thus: so far we knew:
[tex]P(Q_2) = \dfrac{1}{4} \\ \\ P(Q_2) = \dfrac{3}{4}[/tex]
We can now apply Naive-Bayes Theorem;
So, the probability P(of the token from Urn 2| the token is blue) = [tex]P(Q_2|R)[/tex]
[tex]P(Q_2|R) = \dfrac{P(R \cap Q_2)}{P(R)} \\ \\ = \dfrac{P(R|Q_2) * P(Q_2)}{P(R|Q_2) \ P(R_2) + P(R|Q_1) \ P(Q_1)} \\ \\ \\ \\ = \dfrac{\dfrac{12}{17} \times \dfrac{1}{4} }{\dfrac{12}{17} \times \dfrac{1}{4} + \dfrac{4}{13} \times \dfrac{3}{4}} \\ \\ \\ = \dfrac{13}{30}[/tex]
= 0.433
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.