Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
0.433
Step-by-step explanation:
From the given information;
Let represent Urn 1 to be Q₁ ;
Urn 2 to be Q₂
and the event that a blue token is taken should be R
SO,
Given that:
Urn 1 comprises of 4 blue token and 9 red tokens,
Then, the probability of having a blue token | urn 1 picked is:
[tex]P(R|Q_1) = \dfrac{4}{4+9}[/tex]
[tex]= \dfrac{4}{13}[/tex]
Urn 2 comprises of 12 blue token and 5 red tokens;
Thus [tex]P(R| Q_2) = \dfrac{12}{12+5}[/tex]
[tex]=\dfrac{12}{17}[/tex]
SO, if two coins are flipped, the probability of having two heads = [tex]\dfrac{1}{4}[/tex]
(since (H,H) is the only way)
Also, the probability of having at least one single tail = [tex]\dfrac{3}{4}[/tex]
(since (H,T), (T,H), (T,T) are the only possible outcome)
Thus: so far we knew:
[tex]P(Q_2) = \dfrac{1}{4} \\ \\ P(Q_2) = \dfrac{3}{4}[/tex]
We can now apply Naive-Bayes Theorem;
So, the probability P(of the token from Urn 2| the token is blue) = [tex]P(Q_2|R)[/tex]
[tex]P(Q_2|R) = \dfrac{P(R \cap Q_2)}{P(R)} \\ \\ = \dfrac{P(R|Q_2) * P(Q_2)}{P(R|Q_2) \ P(R_2) + P(R|Q_1) \ P(Q_1)} \\ \\ \\ \\ = \dfrac{\dfrac{12}{17} \times \dfrac{1}{4} }{\dfrac{12}{17} \times \dfrac{1}{4} + \dfrac{4}{13} \times \dfrac{3}{4}} \\ \\ \\ = \dfrac{13}{30}[/tex]
= 0.433
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.