Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A random sample of 340 electronic components manufactured by a certain process are tested, and 30 are found to be defective. A device will be manufactured in which two of the components will be connected in series. The components function independently, and the device will function only if both components function. Let q be the probability that a device functions. Find a 95% confidence interval for q. Round the answers to three decimal places. The 95% confidence interval for q is (

Sagot :

Answer:

95% of the confidence interval for q is

(0.05809 , 0.1183)

Step-by-step explanation:

Step:1

Given that the random sample of 340 electronic components manufactured by a certain process is tested, and 30 are found to be defective.

sample proportion

                   [tex]q^{-} = \frac{x}{n} = \frac{30}{340} = 0.0882[/tex]

Step:2

95% of the confidence interval is determined by

[tex](q - Z_{0.05} \sqrt{\frac{pq}{n} } , q + Z_{0.05} \sqrt{\frac{pq}{n} } )[/tex]

[tex]((0.0804 -1.96 \sqrt{\frac{0.0804 X0.9118}{340} } ,0.0804 +1.96 \sqrt{\frac{0.0804 X0.9118}{340})[/tex]

[tex]( 0.0882- 1.96 \sqrt{0.000236} , 0.0882 + 1.96 \sqrt{0.000236} )[/tex]

(0.0882 - 0.03011 , 0.0882+0.03011)

(  0.05809 , 0.1183)

Final answer:-

95% of the confidence interval for q is

(0.05809 , 0.1183)