Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Solution :
[tex]$\text{Helium and nitrogen}$[/tex] gases are contained in a conduit [tex]$7 \ mm$[/tex] is diameter and [tex]$0.08 \ m$[/tex] long at 317 K (44°C) and a uniform constant pressure of 1 atm.
Given :
Diameter, D = 7 mm
L = 0.1 m
T = 317 K
[tex]$P_{A1}=0.075 \ atm $[/tex]
[tex]$P_{A2}=0.03 \ atm $[/tex]
P = 1 atm
From, table
[tex]$D_{AB}= 0.687 \times 10^{-4} \ m/s$[/tex]
We know :
[tex]$J_{A}^* = D_{AB} \frac{d_{CA}}{dz}$[/tex]
[tex]$J_A^*=\frac{(0.687 \times 10^{-4})(0.075-0.03)(\frac{101.32}{1 \ atm}) }{8.319 \times 298 \times 0.10}$[/tex]
= [tex]$1.26 \times 10^{-6} \ kgmol/m^r s$[/tex]
[tex]$P_{B1} = P-P_{A1}$[/tex]
= 1 - 0.075
= 0.925 atm
[tex]$P_{B2} = P-P_{A2}$[/tex]
= 1 - 0.03
= 0.97 atm
[tex]$J_B^*=D_{AB}\frac{(P_{B1} \times P_{B2})}{RT( \Delta z)}$[/tex]
[tex]$=\frac{0.687 \times 10^{-4}(0.925-0.97)(\frac{101.32}{1 \ atm})}{8.314 \times 298 \times 0.1}$[/tex]
[tex]$=-1.26 \times 10^{-6} \ kg \ mol /m^r s$[/tex]
Partial pressure of helium [tex]$=\frac{0.075+0.03}{2}$[/tex]
= 0.0525 atm
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.