Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
0.9342
Explanation:
The Hardy-Weinberg equation states that p² + 2pq + q² = 1,
where p is the frequency of the dominant 'normal' (n) allele and q is the frequency of the recessive 'albino' (a) allele in the population, while q² represents the frequency of the homo-zygous albino genotype (aa), p² represents the frequency of the homo-zygous normal genotype (nn) and 2pq represents the frequency of the heterozygous genotype (na).
In this case, the frequency of individuals in the population that have the genotype aa (q²) is equal to 26/6000 = 0.004333. In consequence, q is equal to √ 0.004333 = 0.0658.
Moreover, the allele frequency of the normal (n) allele p is equal to 1 - q = 1 - 0.0658 = 0.9342, so p² (nn) = (0.9342)² = 0.8727.
Finally, the frequency of the heterozygous genotype (na) is 2pq = 2 x 0.9342 x 0.0658 = 0.123.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.