At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Proved
Step-by-step explanation:
Given
[tex]B =(-2,-1)[/tex]
[tex]U = (0,3)[/tex]
[tex]G = (3,2)[/tex]
[tex]S = (4,-3)[/tex]
Required
Prove BUGS is a trapezoid
Given the coordinates, to prove a trapezoid; all we need to do is to check if one pair of sides is parallel.
Taking BU and GS as a pair
First, we calculate the slope using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
For BU
[tex]B =(-2,-1)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]U = (0,3)[/tex] --- [tex](x_2,y_2)[/tex]
So, we have:
[tex]m = \frac{3 - -1}{0- -2}[/tex]
[tex]m = \frac{4}{2}[/tex]
[tex]m = 2[/tex]
For GS
[tex]G = (3,2)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]S = (4,-3)[/tex] --- [tex](x_2,y_2)[/tex]
So, we have:
[tex]m = \frac{-3-2}{4-3}[/tex]
[tex]m = \frac{-5}{1}[/tex]
[tex]m = -5[/tex]
The slope of BU and GS are not the same; hence, they are not parallel.
Taking BS and GU as a pair
Calculate the slope
For BS
[tex]B =(-2,-1)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]S = (4,-3)[/tex] --- [tex](x_2,y_2)[/tex]
So, we have:
[tex]m = \frac{-3 - -1}{4- -2}[/tex]
[tex]m = \frac{-2}{6}[/tex]
[tex]m = -\frac{1}{3}[/tex]
For GU
[tex]G = (3,2)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]U = (0,3)[/tex] --- [tex](x_2,y_2)[/tex]
So, we have:
[tex]m = \frac{3-2}{0-3}[/tex]
[tex]m = \frac{1}{-3}[/tex]
[tex]m = -\frac{1}{3}[/tex]
The slope of BS and GU are the same; hence, they are parallel.
BUGS is a trapezoid because BS and GU have the same slope
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.