Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Miguel draws a square on a coordinate plane. One vertex is located at (5,4). The length of each side is 3 units. Circle the letter by all the ordered pairs that could be another vertex. A. (5,1) B. (5,7) C. (7,8) D. (2,6) E. (2,1)

I will give brainliest if you answer both questions!


Sagot :

Answer:

A, B, and E.

Step-by-step explanation:

We know that one vertex is at (5, 4), and each side of our square is 3 units long.

Then the distance between the known vertex and another vertex is 3 units (if those vertexes are connected by a side of the square) or (√2)*3  units (if those vertexes are connected by the diagonal of the square).

Also remember that the distance between two points (a, b) and (b, c) is:

distance = √(  (a - c)^2 + (b - d)^2)

So we need to find the distance between our point and all the ones given in the options:

A) the distance between (5, 4) and (5, 1) is:

distance = √( (5 - 5)^2 + (4 - 1)^2) = 3

Then point (5, 1) can be a vertex.

B) The distance between (5, 4) and (5, 7) is:

distance = √( (5 - 5)^2 + (4 - 7)^2) = 3

Then (5, 7) can be a vertex.

C)  The distance between (5, 4) and (7, 8) is:

distance = √( (5 - 7)^2 + (4 - 8)^2) = √( 2^2 + 4^2) = √20

Point (7, 8) can not be a vertex.

D)  The distance between (5, 4) and (2, 6) is:

distance = √( (5 - 2)^2 + (4 - 6)^2) = √( 3^2 + 2^2) = √13

Point (2, 6) can not be a vertex.

E) The distance between (5, 4) and (2, 1) is:

distance = √( (5 - 2)^2 + (4 - 1)^2) = √( 3^2 + 3^2) = √18 = √(2*9) = √2*√9 = √2*3

Then point (2, 1) can be a vertex.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.