Answered

Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Geometry - No links please

Geometry No Links Please class=

Sagot :

Answer:

36

Step-by-step explanation:

[tex] In\: \triangle ABR \:\&\: \triangle ANH[/tex]

BR || HN(Given)

Therefore,

[tex] \angle ABR \cong \angle ANH[/tex] (Alternate angles)

[tex] \angle BAR \cong \angle HAN[/tex] (Vertical angles)

[tex] \therefore \triangle ABR \sim \triangle ANH[/tex] (AA postulate)

[tex] \therefore \frac{AB}{AN} =\frac{BR}{HN} [/tex] (csst)

[tex] \therefore \frac{x}{16} =\frac{27}{12} [/tex]

[tex] \therefore \frac{x}{16} =\frac{9}{4} [/tex]

[tex] \therefore x =\frac{9\times 16}{4} [/tex]

[tex] \therefore x ={9\times 4} [/tex]

[tex] \therefore x =36 [/tex]