Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
[tex]b_i = -0.020125[/tex]
Step-by-step explanation:
Given
[tex]\sum x_i= 2000[/tex]
[tex]\sum y_i= 86.6[/tex]
[tex]\sum x_i^2= 216000[/tex]
[tex]\sum x_iy_i = 8338[/tex]
[tex]n = 20[/tex]
Required
Determine the slope (b) of the regression line
This is calculated as:
[tex]b_i = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}[/tex]
Substitute values for each term, we have:
[tex]b_i = \frac{8338 - \frac{2000 * 86.6}{20}}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the numerator
[tex]b_i = \frac{8338 - 8660}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the denominator
[tex]b_i = \frac{8338 - 8660}{216000 - 200000}[/tex]
[tex]b_i = \frac{-322}{16000}[/tex]
[tex]b_i = -0.020125[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.