Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]b_i = -0.020125[/tex]
Step-by-step explanation:
Given
[tex]\sum x_i= 2000[/tex]
[tex]\sum y_i= 86.6[/tex]
[tex]\sum x_i^2= 216000[/tex]
[tex]\sum x_iy_i = 8338[/tex]
[tex]n = 20[/tex]
Required
Determine the slope (b) of the regression line
This is calculated as:
[tex]b_i = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}[/tex]
Substitute values for each term, we have:
[tex]b_i = \frac{8338 - \frac{2000 * 86.6}{20}}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the numerator
[tex]b_i = \frac{8338 - 8660}{216000 - \frac{(2000)^2}{20}}[/tex]
Simplify the denominator
[tex]b_i = \frac{8338 - 8660}{216000 - 200000}[/tex]
[tex]b_i = \frac{-322}{16000}[/tex]
[tex]b_i = -0.020125[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.