Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
1)
Given that:
The joint pmf [tex]p_{X,Y(a,b)}=\left \{ {{\dfrac{1}{4a} \ for \ 1 \le b \le a \le 4 } \\ \\ \atop {0} \ \ \ \ \ \ otherwise} } \right.[/tex]
To emphasize that this is a joint pmf;
We will notice that it obeys two conditions;
- it comprises a non-negative number and which is less than 1
- the sum of all the probabilities adds up and becomes unity.
Except that X and Y are integer value variables with 1 ≤ b ≤ a ≤ 4 and X = 1, 2, 3, 4 and Y = 1, 2, 3, 4 respectively, according to the condition Y ≤ X
The table below shows the joint probabilities as a result of this:
y = 1 y = 2 y = 1 y = 4 Total
x = 1 [tex]\dfrac{1}{4}[/tex] 0 0 0 [tex]\dfrac{1}{4}[/tex]
x = 2 [tex]\dfrac{1}{8}[/tex] [tex]\dfrac{1}{8}[/tex] 0 0 [tex]\dfrac{1}{4}[/tex]
x = 3 [tex]\dfrac{1}{12}[/tex] [tex]\dfrac{1}{12}[/tex] [tex]\dfrac{1}{12}[/tex] 0 [tex]\dfrac{1}{4}[/tex]
x = 4 [tex]\dfrac{1}{16}[/tex] [tex]\dfrac{1}{16}[/tex] [tex]\dfrac{1}{16}[/tex] [tex]\dfrac{1}{16}[/tex] [tex]\dfrac{1}{4}[/tex]
Total [tex]\dfrac{25}{48}[/tex] [tex]\dfrac{13}{48}[/tex] [tex]\dfrac{7}{48}[/tex] [tex]\dfrac{3}{48}[/tex] 1
In the table, it is obvious that each respective value of the probability is positive and the addition of all the values sums up to unity (1).
Hence, the given probability shows that it is indeed a pmf(probability mass function).
(b)
Marginal Pmf of x = [tex]\dfrac{sum \ of \ all \ prob. \ of (x,y)}{y}[/tex]
Marginal Pmf of y = [tex]\dfrac{sum \ of \ all \ prob. \ of (x,y)}{x}[/tex]
Thus, we can locate the respective values of the marginal probability in the last row as well as the last column in the explained table above.
(c)
To find P(X=Y+1):
P(X = Y + 1) = P(X = 2,3,4)
⇒ 1 - P(X=1)
[tex]\implies 1 - \dfrac{1}{4} \\ \\ \implies \dfrac{4-1}{4} \\ \\ \implies \dfrac{3}{4}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.