Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Step-by-step explanation:
1. Rewrite this in the form y'(x)+p(x)y(x)=q(x)
x³f' - x = xf +1
x³f' -xf - x = 1
x³f' -xf = 1+x
f' -(x/x³)f=(1+x)/x³
f' -(1/x²)f=(1+x)/x³
So in our case, p(x)=-(1/x²) and q(x)=(1+x)/x³
2. Find the integrating factor
The integrating factor, μ, is equal to [tex]e^{\int\limits {P(x)} \, dx[/tex].
μ = [tex]e^{\int\limits {P(x)} \, dx[/tex]
μ = [tex]e^{\int\limits {-1/x^{2} } \, dx[/tex]
μ = [tex]e^{1/x}[/tex]
3. Multiply equation by the integrating factor
f' - [tex]\frac{1}{x^{2} }[/tex]f = [tex]\frac{1+x}{x^{3} }[/tex]
[tex]e^{1/x}[/tex]f' - [tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]f = [tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]
4. Apply product rule
Consider the product rule: (a⋅b)'=a'⋅b+b'⋅a
In our case, we could say a=[tex]e^{1/x}[/tex] and b=f [Note that ([tex]e^{1/x}[/tex])'=[tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]]
Therefore...
[tex]e^{1/x}[/tex]f' - [tex]e^{1/x}[/tex][tex]\frac{1}{x^{2} }[/tex]f = ([tex]e^{1/x}[/tex] f )'
5. Solve
([tex]e^{1/x}[/tex] f )' = [tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]
[tex]e^{1/x}[/tex] f = ∫ ([tex]e^{1/x}[/tex] [tex]\frac{1+x}{x^{3} }[/tex]) dx
[tex]e^{1/x}[/tex] f = ∫ ([tex]e^{1/x}[/tex]( [tex]\frac{1}{x^{3} }+\frac{1}{x^{2} }[/tex])) dx
[tex]e^{1/x}[/tex] f = ∫ [tex]\frac{e^{1/x} }{x^{3} }+\frac{e^{1/x}}{x^{2} }[/tex] dx
[note the sum rule: ∫(a+b)=∫a+∫b ]
[tex]e^{1/x}[/tex] f = ∫ [tex]\frac{e^{1/x} }{x^{3} }[/tex]dx+ ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx
[tex]e^{1/x}[/tex] f = (-[tex]\frac{e^{1/x} }{x }[/tex]+[tex]e^{1/x}[/tex] )+(-[tex]e^{1/x}[/tex]) +C [step by step for integrating[tex]\frac{e^{1/x} }{x^{3} }[/tex]and[tex]\frac{e^{1/x}}{x^{2} }[/tex] below]
[tex]e^{1/x}[/tex] f = -[tex]\frac{e^{1/x} }{x }[/tex] +C
f = -[tex]\frac{1 }{x }[/tex] +[tex]\frac{C}{e^{1/x}}[/tex]
f = [tex]\frac{C}{e^{1/x}}[/tex] - [tex]\frac{1 }{x }[/tex]
C is just any constant, so for our purposes, let's let C equal 1.
f = [tex]\frac{1}{e^{1/x}}[/tex] - [tex]\frac{1 }{x }[/tex]
[note that [tex]\frac{1}{a^{b} }[/tex]=a⁻ᵇ]
f= [tex]e^{-1/x}[/tex] - [tex]\frac{1 }{x }[/tex]
QED
Below is a full explanation on integrating [tex]\frac{e^{1/x} }{x^{3} }[/tex]and[tex]\frac{e^{1/x}}{x^{2} }[/tex] , I didn't put it above as there was already a bunch of info and it's pretty long
Solving ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx (u-substitution)
Let u =1/x. Therefore [tex]\frac{du}{dx}[/tex] = 1/x² → du = 1/x² dx → dx = -x² du
Therefore, ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx = ∫[tex]\frac{e^{u} }{x^{3} }[/tex](-x²) du
∫[tex]\frac{e^{u} }{x^{3} }[/tex](-x²) du
∫- [tex]\frac{e^{u} }{x} }[/tex]du
Note that if u=1/x, x=1/u
∫- [tex]\frac{e^{u} }{x} }[/tex]du
∫- [tex]\frac{e^{u} }{1/u} }[/tex]du
- ∫ [tex]e^{u}[/tex]u du
Note that ∫ab'=ab-∫a'b. Here, a=u, b= [tex]e^{u}[/tex]. Therefore, a'=u'=1, b'= [tex]e^{u}[/tex].
So, - ∫ [tex]e^{u}[/tex]u du = - ([tex]e^{u}[/tex]u-- ∫ [tex]e^{u}[/tex] du) = -([tex]e^{u}[/tex]u-[tex]e^{u}[/tex]) = -[tex]e^{u}[/tex]u+[tex]e^{u}[/tex]
Now sub 1/x back in for u: -[tex]e^{u}[/tex]u+[tex]e^{u}[/tex] = -[tex]e^{1/x}[/tex](1/x) +[tex]e^{1/x}[/tex] = [tex]\frac{-e^{1/x} }{x}[/tex]+[tex]e^{1/x}[/tex]
So ∫[tex]\frac{e^{1/x} }{x^{3} }[/tex]dx = [tex]\frac{-e^{1/x} }{x}[/tex]+[tex]e^{1/x}[/tex]
Solving ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx (u-substitution)
Let u =1/x again. Therefore, as we've seen above, [tex]\frac{du}{dx}[/tex] = 1/x² → du = 1/x² dx → dx = -x² du.
Therefore, ∫[tex]\frac{e^{1/x} }{x^{2} }[/tex]dx = ∫[tex]\frac{e^{u} }{x^{2} }[/tex](-x²) du = ∫-[tex]e^{u}[/tex] du = -∫[tex]e^{u}[/tex] du = - [tex]e^{u}[/tex].
Sub 1/x back in for u: - [tex]e^{u}[/tex]= - [tex]e^{1/x}[/tex]
So ∫ [tex]\frac{e^{1/x}}{x^{2} }[/tex] dx = [tex]e^{1/x}[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.