Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
1) [tex]I=1.8*10^{-6}\: W/m^{2}[/tex]
2) [tex]E=0.037 \: V/m[/tex]
Explanation:
1)
The intensity equation is given by:
[tex]I=\frac{P}{4\pi r^{2}}[/tex]
Where:
- P is the power of the radio wave
- r is the distance from the source
[tex]I=\frac{20000}{4\pi (30000)^{2}}[/tex]
[tex]I=1.8*10^{-6}\: W/m^{2}[/tex]
2)
Now, the intensity and the electric field are related as:
[tex] I=0.5c\epsilon_{0}E^{2}[/tex]
Here:
- c is the speed of light
- ε₀ is the electric permittivity
- E is the electric field
We need to solve it for E.
[tex]E= \sqrt{\frac{2I}{c\epsilon_{0}}}[/tex]
[tex]E= \sqrt{\frac{2(1.8*10^{-6})}{(3*10^{8})(8.85*10^{-12})}}[/tex]
[tex]E=0.037 \: V/m[/tex]
I hope it helps you!
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.