Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
1) T = 649.86 s, 2) L₀ = L_f, [tex]\frac{K_o}{K_f}[/tex] = 4.8
Explanation:
1) As the system of the two bodies is isolated, its angular momentum is conserved
initial instant. r₀ = 155 m, T₀= 385.3 s
L₀ = I₀ w₀
final instant. r = 119.35 m
L_f = I w
L₀ = L_f
I₀ w₀ = I w
w = [tex]\frac{I_o}{I} \ w_o[/tex]
let's consider each object as punctual
I = m r²
at angle velocity and period are related
w = 2pi / T
we substitute
[tex]\frac{2\pi }{T} = \frac{m r^2}{m _o^2 } \ \frac{2\pi }{T_o}[/tex]
[tex]\frac{1}{T} = ( \frac{r}{r_o} )^2 \ \frac{1}{T_o}[/tex]
T = [tex](\frac{r_o}{r} )^2 \ T_o[/tex]
let's calculate
T = [tex]( \frac{155}{119.35} )^2 \ 385.3[/tex]
T = 649.86 s
2) The angular momentum is conserved because the system is isolated.
Let's look for kinetic energy
K_total = 2 K = 2 (½ I w²)
K_total = I 4π² / T²
K_total = 2m r² 4 π² / T²
for r = 155 m
K₀ = 8π² m r₀² / T₀²
for r = 119.35 m
K_f = 8π² m r² / T²
the relationship is
[tex]\frac{K_o}{K_f} = ( \frac{r_o \ T}{ r \ \ T_o} )^2[/tex]
[tex]\frac{K_o}{K} = ( \frac{ 155 \ \ \ 649.86}{ 119.35 \ 385.3})^2[/tex]
[tex]\frac{K_o}{K_f}[/tex] = 4.8
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.