Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

You want to build a bicycle ramp that is 10 ft long and makes a 30 degree angle with the ground. What would be the height of the ramp?

PLZ HELP ME


Sagot :

Answer:

5.8 feet

Step-by-step explanation:

this problem uses a 30-60-90° triangle

the ratio of sides in a 30-60-90° triangle, respectively, are 1 : [tex]\sqrt{3}[/tex] : 2

let 'h' = height of ramp

we can use this proportion, then cross-multiply:

10/h = [tex]\sqrt{3}[/tex]/1

[tex]\sqrt{3}[/tex]h = 10

h = 10/[tex]\sqrt{3}[/tex]

after rationalizing the denominator we get:

(10[tex]\sqrt{3}[/tex] ) ÷ 3 which is approximately 5.8 feet

Using the trigonometric ratio, the height of the ramp is 5.77 feet.

Length of bicycle ramp = 10 feet

Angle with the ground = 30°

What is the sine of an angle?

The tangent of an angle is the ratio of the opposite side to the adjacent of the triangle.

Suppose the height of the ramp is h.

So, [tex]tan30=\frac{h}{10}[/tex]

[tex]h=10tan30[/tex]

[tex]h=\frac{10}{\sqrt{3} }[/tex]

[tex]h=5.77[/tex] feet.

So,  the height of the ramp is 5.77 feet.

Hence, using the trigonometric ratio, the height of the ramp is 5.77 feet.

To get more about the trigonometric ratios visit:

https://brainly.com/question/24349828