Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
The half-life of the substance is about 288 days.
Step-by-step explanation:
The exponential decay function:
[tex]\displaystyle A=A_0\left(\frac{1}{2}\right)^{t/P}[/tex]
Can determine the amount A of a radioactive substance present at time t. A₀ represents the initial amount and P is the half-life of the substance.
We are given that a substance loses 70% of its radioactivity in 500 days, and we want to determine the period of the half-life.
In other words, we want to determine P.
Since the substance has lost 70% of its radioactivity, it will have only 30% of its original amount. This occured in 500 days. Therefore, A = 0.3A₀ when t = 500 (days). Substitute:
[tex]\displaystyle 0.3A_0=A_0\left(\frac{1}{2}\right)^{500/P}[/tex]
Divide both sides by A₀:
[tex]\displaystyle 0.3=\left(\frac{1}{2}\right)^{500/P}[/tex]
We can take the natural log of both sides:
[tex]\displaystyle \ln(0.3)=\ln\left(\left(\frac{1}{2}\right)^{500/P}\right)[/tex]
Using logarithmic properties:
[tex]\displaystyle \ln(0.3)=\frac{500}{P}\left(\ln\left(\frac{1}{2}\right)\right)[/tex]
So:
[tex]\displaystyle \frac{500}{P}=\frac{\ln(0.3)}{\ln(0.5)}[/tex]
Take the reciprocal of both sides:
[tex]\displaystyle \frac{P}{500}=\displaystyle \frac{\ln(0.5)}{\ln(0.3)}[/tex]
Use a calculator:
[tex]\displaystyle P=\frac{500\ln(0.5)}{\ln(0.3)}\approx287.86[/tex]
The half-life of the substance is about 288 days.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.