Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

1
Select the correct answer from each drop-down menu.
A certain distribution has a mean value of 100 and a standard distribution of 15.
Assuming the values are distributed normally, 95% of values will fall between
and
V
Reset
Next


1 Select The Correct Answer From Each Dropdown Menu A Certain Distribution Has A Mean Value Of 100 And A Standard Distribution Of 15 Assuming The Values Are Dis class=

Sagot :

Answer: 70, 130

Step-by-step explanation:

In the given normal distribution with a mean of 100 and standard distribution of 15, 95% of values will fall between 70 and 130 using the Empirical rule of 95%.

Step-by-step explanation:

A normal distribution with a mean of 100 and a standard distribution of 15 is given.

We will find where 95% of data fall in the given normal distribution.

What is the Empirical rule of 95%?

It states that in a normal distribution approximately 95% of observations fall within two standard deviations from the mean on both sides of the normal curve.

The mean in a normal distribution is the center of the normal curve.

The standard deviation in a normal distribution is the distance from the mean to the required point on either side.

We have,

Mean = 100

Standard deviation = 15

Applying the 95% rule we get,

On the right side of the normal curve

Mean + 2 x standard deviation = 100 + 2x 15 = 100 + 30 = 130.

On the left side of the normal curve,

Mean - 2 x standard deviation  = 100 - 2x15 = 100 - 30 = 70.

Thus, we see that by using the Empirical rule of 95%, 95% values will fall between 70 and 130.

Learn more about Normal distribution here:

https://brainly.com/question/14916937

#SPJ5