Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \boxed{\bold{2 \pi}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle \bold{(cu)' = cu'}[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \bold{\int\limits^b_a {f(x)} \, dx = F(b) - F(a)}[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \bold{\int {cf(x)} \, dx = c \int {f(x)} \, dx}[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \bold{\int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx}[/tex]
Integration Method: U-Substitution
Reduction Formula [Sine]:
[tex]\displaystyle \bold{\int {\sin^n x} \, dx = \frac{n - 1}{n} \int {\sin^{n - 2} x} \, dx - \frac{\cos x \sin^{n - 1} x}{n} + C}[/tex]
Reduction Formula [Cosine]:
[tex]\displaystyle \bold{\int {\cos^n x} \, dx = \frac{n - 1}{n} \int {\cos^{n - 2} x} \, dx + \frac{\cos^{n - 1} x \sin x}{n} + C}[/tex]
Multivariable Calculus
Partial Derivatives
Partial Derivative Rule [Chain Rule]:
[tex]\displaystyle \bold{\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}}[/tex]
Vector Calculus
Circulation Density:
[tex]\displaystyle F = M \hat{\i} + N \hat{\j} \rightarrow \text{curl} \ \bold{F} \cdot \bold{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}[/tex]
Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \bold{\oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy}[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy}[/tex]
[tex]\displaystyle \text{Parametrized by:} \left\{\begin{array}{ccc} x = 2 \cos t \\ y = \sin t \\ 0 \leq \theta \leq 2 \pi \end{array}[/tex]
Step 2: Integrate Pt. 1
- Parametrize integrand:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \displaystyle \oint_C {(\sin t - 2 \cos t) \, dx + (4 \cos t - \sin t) \, dy}[/tex] - [Circulation Density] Differentiate [Partial Derivative Rule - Chain Rule]:
[tex]\displaystyle \frac{dx}{dt} = -2 \sin t , \ \frac{dy}{dt} = \cos t[/tex] - [Green's Theorem] Substitute in variables:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \oint_C {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex] - [Integral] Substitute in region R:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex]
Step 3: Integrate Pt. 2
We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt \\& = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)} \, dt + \int\limits^{2 \pi}_0 {\cos t(4 \cos t - \sin t)} \, dt \\& = 4 \int\limits^{2 \pi}_0 {\cos t \sin t - 2 \sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2t - \cos t \sin t} \, dt \\\end{aligned}[/tex]
[tex]\displaystyle\begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = 4 \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt - 2 \int\limits^{2 \pi}_0 {\sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2 t} \, dt - \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt \\& = \bigg( 2 \sin^2t + \cos t \sin t - t \bigg) \bigg| \limits^{2 \pi}_0 + \bigg( \sin 2t + \frac{\cos 2t}{4} + 2t \bigg) \bigg| \limits^{2 \pi}_0 \\& = -2 \pi + 4 \pi \\& = \boxed{\bold{2 \pi}}\end{aligned}[/tex]
∴ we have evaluated the line integral using Green's Theorem.
---
Learn more about Green's Theorem: https://brainly.com/question/14545362
Learn more about multivariable calculus: https://brainly.com/question/14502499
---
Topic: Multivariable Calculus
Unit: Green's Theorem and Surfaces
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.