Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \boxed{\bold{2 \pi}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle \bold{(cu)' = cu'}[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \bold{\int\limits^b_a {f(x)} \, dx = F(b) - F(a)}[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \bold{\int {cf(x)} \, dx = c \int {f(x)} \, dx}[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \bold{\int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx}[/tex]
Integration Method: U-Substitution
Reduction Formula [Sine]:
[tex]\displaystyle \bold{\int {\sin^n x} \, dx = \frac{n - 1}{n} \int {\sin^{n - 2} x} \, dx - \frac{\cos x \sin^{n - 1} x}{n} + C}[/tex]
Reduction Formula [Cosine]:
[tex]\displaystyle \bold{\int {\cos^n x} \, dx = \frac{n - 1}{n} \int {\cos^{n - 2} x} \, dx + \frac{\cos^{n - 1} x \sin x}{n} + C}[/tex]
Multivariable Calculus
Partial Derivatives
Partial Derivative Rule [Chain Rule]:
[tex]\displaystyle \bold{\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}}[/tex]
Vector Calculus
Circulation Density:
[tex]\displaystyle F = M \hat{\i} + N \hat{\j} \rightarrow \text{curl} \ \bold{F} \cdot \bold{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}[/tex]
Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \bold{\oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy}[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy}[/tex]
[tex]\displaystyle \text{Parametrized by:} \left\{\begin{array}{ccc} x = 2 \cos t \\ y = \sin t \\ 0 \leq \theta \leq 2 \pi \end{array}[/tex]
Step 2: Integrate Pt. 1
- Parametrize integrand:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \displaystyle \oint_C {(\sin t - 2 \cos t) \, dx + (4 \cos t - \sin t) \, dy}[/tex] - [Circulation Density] Differentiate [Partial Derivative Rule - Chain Rule]:
[tex]\displaystyle \frac{dx}{dt} = -2 \sin t , \ \frac{dy}{dt} = \cos t[/tex] - [Green's Theorem] Substitute in variables:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \oint_C {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex] - [Integral] Substitute in region R:
[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex]
Step 3: Integrate Pt. 2
We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt \\& = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)} \, dt + \int\limits^{2 \pi}_0 {\cos t(4 \cos t - \sin t)} \, dt \\& = 4 \int\limits^{2 \pi}_0 {\cos t \sin t - 2 \sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2t - \cos t \sin t} \, dt \\\end{aligned}[/tex]
[tex]\displaystyle\begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = 4 \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt - 2 \int\limits^{2 \pi}_0 {\sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2 t} \, dt - \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt \\& = \bigg( 2 \sin^2t + \cos t \sin t - t \bigg) \bigg| \limits^{2 \pi}_0 + \bigg( \sin 2t + \frac{\cos 2t}{4} + 2t \bigg) \bigg| \limits^{2 \pi}_0 \\& = -2 \pi + 4 \pi \\& = \boxed{\bold{2 \pi}}\end{aligned}[/tex]
∴ we have evaluated the line integral using Green's Theorem.
---
Learn more about Green's Theorem: https://brainly.com/question/14545362
Learn more about multivariable calculus: https://brainly.com/question/14502499
---
Topic: Multivariable Calculus
Unit: Green's Theorem and Surfaces
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.