Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Use Green's Theorem to evaluate the line integral

(y − x)dx + (2x − y)dy

C

for the given path.
C: x = 2 cos(), y = sin(), 0 ≤ ≤ 2


Sagot :

Space

Answer:

[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \boxed{\bold{2 \pi}}[/tex]

General Formulas and Concepts:
Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
[tex]\displaystyle \bold{(cu)' = cu'}[/tex]
Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \bold{\int\limits^b_a {f(x)} \, dx = F(b) - F(a)}[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \bold{\int {cf(x)} \, dx = c \int {f(x)} \, dx}[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \bold{\int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx}[/tex]

Integration Method: U-Substitution

Reduction Formula [Sine]:
[tex]\displaystyle \bold{\int {\sin^n x} \, dx = \frac{n - 1}{n} \int {\sin^{n - 2} x} \, dx - \frac{\cos x \sin^{n - 1} x}{n} + C}[/tex]

Reduction Formula [Cosine]:
[tex]\displaystyle \bold{\int {\cos^n x} \, dx = \frac{n - 1}{n} \int {\cos^{n - 2} x} \, dx + \frac{\cos^{n - 1} x \sin x}{n} + C}[/tex]

Multivariable Calculus

Partial Derivatives

Partial Derivative Rule [Chain Rule]:
[tex]\displaystyle \bold{\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}}[/tex]

Vector Calculus

Circulation Density:
[tex]\displaystyle F = M \hat{\i} + N \hat{\j} \rightarrow \text{curl} \ \bold{F} \cdot \bold{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}[/tex]

Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \bold{\oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy}[/tex]

Step-by-step explanation:

Step 1: Define

Identify given.

[tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy}[/tex]

[tex]\displaystyle \text{Parametrized by:} \left\{\begin{array}{ccc} x = 2 \cos t \\ y = \sin t \\ 0 \leq \theta \leq 2 \pi \end{array}[/tex]

Step 2: Integrate Pt. 1

  1. Parametrize integrand:
    [tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \displaystyle \oint_C {(\sin t - 2 \cos t) \, dx + (4 \cos t - \sin t) \, dy}[/tex]
  2. [Circulation Density] Differentiate [Partial Derivative Rule - Chain Rule]:
    [tex]\displaystyle \frac{dx}{dt} = -2 \sin t , \ \frac{dy}{dt} = \cos t[/tex]
  3. [Green's Theorem] Substitute in variables:
    [tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \oint_C {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex]
  4. [Integral] Substitute in region R:
    [tex]\displaystyle \oint_C {(y - x) \, dx + (2x - y) \, dy} = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt[/tex]

Step 3: Integrate Pt. 2

We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)+ \cos t(4 \cos t - \sin t)} \, dt \\& = \int\limits^{2 \pi}_0 {-2 \sin t(\sin t - 2 \cos t)} \, dt + \int\limits^{2 \pi}_0 {\cos t(4 \cos t - \sin t)} \, dt \\& = 4 \int\limits^{2 \pi}_0 {\cos t \sin t - 2 \sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2t - \cos t \sin t} \, dt \\\end{aligned}[/tex]

[tex]\displaystyle\begin{aligned}\oint_C {(y - x) \, dx + (2x - y) \, dy} & = 4 \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt - 2 \int\limits^{2 \pi}_0 {\sin^2t} \, dt + 4 \int\limits^{2 \pi}_0 {\cos^2 t} \, dt - \int\limits^{2 \pi}_0 {\cos t \sin t} \, dt \\& = \bigg( 2 \sin^2t + \cos t \sin t - t \bigg) \bigg| \limits^{2 \pi}_0 + \bigg( \sin 2t + \frac{\cos 2t}{4} + 2t \bigg) \bigg| \limits^{2 \pi}_0 \\& = -2 \pi + 4 \pi \\& = \boxed{\bold{2 \pi}}\end{aligned}[/tex]

∴ we have evaluated the line integral using Green's Theorem.

---

Learn more about Green's Theorem: https://brainly.com/question/14545362
Learn more about multivariable calculus: https://brainly.com/question/14502499

---

Topic: Multivariable Calculus

Unit: Green's Theorem and Surfaces