Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
The test statistic is [tex]z = -0.28[/tex]
Step-by-step explanation:
First, before finding the test statistic, we need to understand the central limit theorem and difference between normal variables.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
A random sample of children in two different schools found that 16 of 40 at one school
This means that:
[tex]p_1 = \frac{16}{40} = 0.4, s_1 = \sqrt{\frac{0.4*0.6}{40}} = 0.0775[/tex]
13 of 30 at the other had this infection.
This means that:
[tex]p_2 = \frac{13}{30} = 0.4333, s_2 = \sqrt{\frac{0.4333*0.5667}{30}} = 0.0905[/tex]
Conduct a test to answer if there is sufficient evidence to conclude that a difference exists between the proportion of students who have ear infections at one school and the other.
At the null hypothesis, we test if there is no difference, that is:
[tex]H_0: p_1 - p_2 = 0[/tex]
And at the alternate hypothesis, we test if there is difference, that is:
[tex]H_a: p_1 - p_2 \neq 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis and s is the standard error
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the two samples:
[tex]p = p_1 - p_2 = 0.4 - 0.4333 = -0.0333[/tex]
[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.0775^2+0.0905^2} = 0.1191[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{-0.0333 - 0}{0.1191}[/tex]
[tex]z = -0.28[/tex]
The test statistic is [tex]z = -0.28[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.