Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
By the Central Limit Theorem, an approximately normal distribution, with mean $6425 and standard deviation $344.35.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Sample mean was $6,425 with a standard deviation of $3,156
This means that [tex]\mu = 6425, \sigma = 3156[/tex]
Sample of 84:
This means that [tex]n = 84, s = \frac{3156}{\sqrt{84}} = 344.35[/tex]
a. Which distribution should you use for this problem?
By the Central Limit Theorem, an approximately normal distribution, with mean $6425 and standard deviation $344.35.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.