Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
By the Central Limit Theorem, an approximately normal distribution, with mean $6425 and standard deviation $344.35.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Sample mean was $6,425 with a standard deviation of $3,156
This means that [tex]\mu = 6425, \sigma = 3156[/tex]
Sample of 84:
This means that [tex]n = 84, s = \frac{3156}{\sqrt{84}} = 344.35[/tex]
a. Which distribution should you use for this problem?
By the Central Limit Theorem, an approximately normal distribution, with mean $6425 and standard deviation $344.35.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.