Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Consider the piecewise function.



f (x) = StartLayout Enlarged left-brace first row 2 x, x less-than 1 second row negative 4, x = 1 third row x + 8, x greater-than 1 EndLayout

The function has a discontinuity at x = 1. What are Limit of f (x) as x approaches 1 minus and Limit of f (x) as x approaches 1 plus?

Limit of f (x) = 2 as x approaches 1 minus. Limit of f (x) = 9 as x approaches 1 plus.
Limit of f (x) = 9 as x approaches 1 minus. Limit of f (x) = 2 as x approaches 1 plus.
Limit of f (x) = negative 4 as x approaches 1 minus. Limit of f (x) = negative 4 as x approaches 1 plus.
Limit of f (x) D N E as x approaches 1 minus. Limit of f (x) D N E as x approaches 1 plus.


Consider The Piecewise Function F X StartLayout Enlarged Leftbrace First Row 2 X X Lessthan 1 Second Row Negative 4 X 1 Third Row X 8 X Greaterthan 1 EndLayout class=