Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Step-by-step explanation:
From the given information:
Assuming we have an integer c to represent the components in the stocks.
Thus, the needed probability can be expressed as:
[tex]P(X_1+X_2+ ........ X_c \ge 2000)[/tex]
To break this down, we have:
[tex]P(\sum X_i \ge 2000) = P \Bigg(\dfrac{\sum X_i - 100n}{\sqrt{n \ Var (X)}} \ge \dfrac{2000-100 n }{\sqrt{n \times 900}} \Bigg )[/tex]
[tex]P \Bigg(\dfrac{\sum X_i - 100n}{\sqrt{n \ Var (X)}} \ge \dfrac{2000-100 n }{\sqrt{n \times 900}} \Bigg )= P (Z \ge 0.95 ) \ \ \ because \ Z_{0.05} = -1.65 \\ \\ \\ \dfrac{2000-100 n }{\sqrt{n \times 900}} = -1.65 \\ \\ \\ \dfrac{100\ n-2000 }{\sqrt{900n}} = 1.65 \\ \\ 100 n -1.65 \sqrt{900 n }-2000 = 0[/tex]
By solving the equation:
n = 23
Thus, relating to the needed condition; n ≥ 23
The needed number of the components that should be in stock should be at least 23.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.