Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Determine the speed of the 50-kg cylinder after it has descended a distance of 2 m, starting from rest. Gear A has a mass of 10 kg and a radius of gyration of 125 mm about its center of mass. Gear B and drum C have a combined mass of 30 kg and a radius of gyration about their center of mass of 150 mm

Sagot :

This question is incomplete, the missing image is uploaded along this answer below.

Answer:

the speed of the 50-kg cylinder after it has descended is 3.67 m/s

Explanation:

 Given the data in the question and the image below;

relation between velocity of cylinder and velocity of the drum is;

V[tex]_D[/tex] = ω[tex]_c[/tex] × r[tex]_c[/tex]  ----- let this be equ 1

where V[tex]_D[/tex] is velocity of cylinder,  ω[tex]_c[/tex] is the angular velocity of drum C and r[tex]_c[/tex] is the radius of drum C

Now, Angular velocity of gear B is;

ω[tex]_B[/tex] = ω[tex]_C[/tex]

ω[tex]_B[/tex] = V[tex]_D[/tex] / r[tex]_c[/tex]  -------- let this equ 2

so;

V[tex]_D[/tex] / 0.1 m = 10V[tex]_D[/tex]

Next, we determine the angular velocity of gear A;

from the diagram;

ω[tex]_A[/tex]( 0.15 m ) = ω[tex]_B[/tex]( 0.2 m )

from equation 2; ω[tex]_B[/tex] = V[tex]_D[/tex] / r[tex]_c[/tex]

so

ω[tex]_A[/tex]( 0.15 m ) = (V[tex]_D[/tex] / r[tex]_c[/tex] ) 0.2 m

substitutive in value of radius r[tex]_c[/tex] (0.1 m)

ω[tex]_A[/tex]( 0.15 m ) = (V[tex]_D[/tex] / 0.1 m ) 0.2 m

ω[tex]_A[/tex]( 0.15 ) = 0.2V[tex]_D[/tex] / 0.1

ω[tex]_A[/tex] =  2V[tex]_D[/tex]  / 0.15

ω[tex]_A[/tex] = 13.333V[tex]_D[/tex]   ----- let this be equation 3

To get the speed of the cylinder, we use energy conversation;

assuming that the final position is;

T₁ + ∑[tex]U_{1-2[/tex] = T₂

0 + m[tex]_D[/tex]gh = [tex]\frac{1}{2}[/tex]m[tex]_D[/tex]V²[tex]_D[/tex] + [tex]\frac{1}{2}I_A[/tex]ω²[tex]_A[/tex] + [tex]\frac{1}{2}I_B[/tex]ω²[tex]_B[/tex]

so

m[tex]_D[/tex]gh = [tex]\frac{1}{2}[/tex]m[tex]_D[/tex]V²[tex]_D[/tex] + [tex]\frac{1}{2}[/tex](m[tex]_A[/tex]k[tex]_A[/tex]²)(13.333V[tex]_D[/tex])² + [tex]\frac{1}{2}[/tex](m[tex]_B[/tex]k[tex]_B[/tex]²)(10V[tex]_D[/tex])²

we given that; m[tex]_D[/tex] = 50 kg, h = 2 m, m[tex]_A[/tex] = 10 kg, k[tex]_A[/tex] 125 mm = 0.125 m, m[tex]_B[/tex] = 30 kg, k[tex]_B[/tex] = 150 mm = 0.15 m.

we know that; g = 9.81 m/s²

so we substitute

50 × 9.81 × 2 = ( [tex]\frac{1}{2}[/tex] × 50 × V[tex]_D[/tex]²) + [tex]\frac{1}{2}[/tex]( 10 × (0.125)² )(13.333V[tex]_D[/tex])² + [tex]\frac{1}{2}[/tex]( 30 × (0.15)²)(10V[tex]_D[/tex])²

981 = 25V[tex]_D[/tex]² + 13.888V[tex]_D[/tex]² + 33.75V[tex]_D[/tex]²

981 = 72.638V[tex]_D[/tex]²

V[tex]_D[/tex]² = 981 / 72.638

V[tex]_D[/tex]² = 13.5053

V[tex]_D[/tex] = √13.5053

V[tex]_D[/tex] = 3.674955 ≈ 3.67 m/s

Therefore,  the speed of the 50-kg cylinder after it has descended is 3.67 m/s

View image nuhulawal20
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.