At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
(a)
[tex]\begin{array}{cccc} {y} & {0} & {1} & {2} & {p(y|1)} &{0.2353}&{0.5882} & {0.1765}\ \end{array}[/tex]
(b)
[tex]\begin{array}{cccc} {y} & {0} & {1} & {2} & {p(y|2)} &{0.0962}&{0.2692} & {0.6346}\ \end{array}[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{ccccc}{} & {y} & { } & { }& { } & {x} & {0} & {1} & {2} & {total} & {0} &{0.1}&{0.03} & {0.01} & {0.14} & {1} &{0.08}&{0.20} & {0.06} &{0.34}& {2} &{0.05}&{0.14} & {0.33} &{0.52 } \ \end{array}[/tex]
Solving (a): Find PMF of y if x = 1
This implies that, we consider the dataset of the row where x = 1 i.e.
[tex]\begin{array}{ccccc}{} & {y} & { } & { }& { } & {x} & {0} & {1} & {2} & {total} & {1} &{0.08}&{0.20} & {0.06} &{0.34} \ \end{array}[/tex]
The PMF of y given x is calculated using:
[tex]Py|x(yi)=P(y=y_i|x)=\frac{P(y=x_i\ \&\ x)}{P(x)}[/tex]
When x = 1
[tex]P(x) = 0.34[/tex] --- the sum of the rows
So, we have:
[tex]Py|x(yi)=P(y=y_i|x)=\frac{P(y=x_i\ \&\ x)}{0.34}[/tex]
For i = 0 to 2, we have:
[tex]i = 0[/tex]
[tex]P(y=0|x)=\frac{P(y=0\ \&\ x = 1)}{0.34}[/tex]
[tex]P(y=0|x)=\frac{0.08}{0.34}[/tex]
[tex]P(y=0|x)=0.2353[/tex]
[tex]i =1[/tex]
[tex]P(y=1|x)=\frac{P(y=1\ \&\ x = 1)}{0.34}[/tex]
[tex]P(y=1|x)=\frac{0.20}{0.34}[/tex]
[tex]P(y=1|x)=0.5882[/tex]
[tex]i = 2[/tex]
[tex]P(y=2|x)=\frac{P(y=2\ \&\ x = 1)}{0.34}[/tex]
[tex]P(y=2|x)=\frac{0.06}{0.34}[/tex]
[tex]P(y=2|x)=0.1765[/tex]
So, the PMF of y given that x = 1 is:
[tex]\begin{array}{cccc} {y} & {0} & {1} & {2} & {p(y|1)} &{0.2353}&{0.5882} & {0.1765}\ \end{array}[/tex]
Solving (b): The interpretation of (b) is to find the PMF of y if x = 2
This implies that, we consider the dataset of the row where x = 2 i.e.
[tex]\begin{array}{ccccc}{} & {y} & { } & { }& { } & {x} & {0} & {1} & {2} & {total} & {2} &{0.05}&{0.14} & {0.33} &{0.52 }\ \end{array}[/tex]
When [tex]x = 2[/tex]
[tex]P(x) = 0.52[/tex]
So, we have:
[tex]Py|x(yi)=P(y=y_i|x)=\frac{P(y=x_i\ \&\ x)}{0.52}[/tex]
For i = 0 to 2, we have:
[tex]i = 0[/tex]
[tex]P(y=0|x)=\frac{P(y=0\ \&\ x = 2)}{0.52}[/tex]
[tex]P(y=0|x)=\frac{0.05}{0.52}[/tex]
[tex]P(y=0|x)=0.0962\\[/tex]
[tex]i =1[/tex]
[tex]P(y=1|x)=\frac{P(y=1\ \&\ x = 2)}{0.52}[/tex]
[tex]P(y=1|x)=\frac{0.14}{0.52}[/tex]
[tex]P(y=1|x)=0.2692[/tex]
[tex]i = 2[/tex]
[tex]P(y=2|x)=\frac{P(y=2\ \&\ x = 2)}{0.52}[/tex]
[tex]P(y=2|x)=\frac{0.33}{0.52}[/tex]
[tex]P(y=2|x)=0.6346[/tex]
[tex]P(y=0|x)=0.0962\\[/tex]
[tex]P(y=1|x)=0.2692[/tex]
[tex]P(y=2|x)=0.6346[/tex]
So, the PMF of y given that x = 1 is:
[tex]\begin{array}{cccc} {y} & {0} & {1} & {2} & {p(y|2)} &{0.0962}&{0.2692} & {0.6346}\ \end{array}[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.