Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
0.631 grams is the theoretical yield of solid copper (Cu) that can be recovered at the end of the experiment
Explanation:
The concentration of the solution is given by :
[tex][C]=\frac{\text{Moles of compound}}{\text{Volume of solution in Liters}}[/tex]
We have:
Concentration of copper (II) nitrate solution = [tex][Cu(NO_3)_2]=2.41 M[/tex]
The volume of solution = 4.12 mL
1 mL= 0.001 L
[tex]4.12 mL= 4.12\times 0.001 L= 0.00412 L[/tex]
Moles of copper (II) nitrate in solution = n
[tex]2.41=\frac{n}{0.00412 L}=0.0099292 mol[/tex]
Moles of copper (II) nitrate in solution = 0.0099292 mol
1 Mole of copper(II) nitrate has 1 mole of copper then 0.0099292 moles of copper(II) nitrate will have :
[tex]1\times 0.0099292 mol= 0.0099292 \text{ mol of Cu}[/tex]
Mass of 0.0099292 moles of copper:
[tex]=0.0099292 mol\times 63.55 g/mol=0.63100 g\approx 0.631 g[/tex]
This mass of copper present in the solution is the theoretical mass of copper present in the given copper(II) nitrate solution.
0.631 grams is the theoretical yield of solid copper (Cu) that can be recovered at the end of the experiment
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.