Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the following. 12, 7, 18, 23, 24, 27 Compute the population standard deviation of the numbers. (Round your answer to two decimal place.) (a) Double each of your original numbers and compute the standard deviation of this new population. (Round your answer to two decimal place.) (b) Use the results of part (a) and inductive reasoning to state what happens to the standard deviation of a population when each data item is multiplied by a positive constant k.

Sagot :

Answer:

(a) [tex]\sigma = 7.04[/tex]

(b) [tex]\sigma = 14.1[/tex]

(c) The population standard deviation is multiplied by k

Step-by-step explanation:

Given

[tex]Dataset: 12, 7, 18, 23, 24, 27[/tex]

Solving (a): The population standard deviation

Start by calculating the mean

[tex]\mu = \frac{\sum x}{n}[/tex]

[tex]\mu = \frac{12+7+18+23+24+27}{6}[/tex]

[tex]\mu = \frac{111}{6}[/tex]

[tex]\mu = 18.5[/tex]

The population standard deviation is:

[tex]\sigma = \sqrt{\frac{\sum(x - \mu)^2}{n}}[/tex]

This gives:

[tex]\sigma = \sqrt{\frac{(12-18.5)^2 + (7 - 18.5)^2 + (18-18.5)^2 + (23-18.5)^2 + (24 - 18.5)^2 + (27 - 18.5)^2}{6}}[/tex]

[tex]\sigma = \sqrt{\frac{297.5}{6}}[/tex]

[tex]\sigma = \sqrt{49.5833}[/tex]

[tex]\sigma = 7.04[/tex]

Solving (b): Double the dataset and calculate the new population standard deviation

The new dataset is:

[tex]Dataset: 24, 14, 36, 46, 48, 54[/tex]

Start by calculating the mean

[tex]\mu = \frac{\sum x}{n}[/tex]

[tex]\mu = \frac{24+ 14+ 36+ 46+ 48+ 54}{6}[/tex]

[tex]\mu = \frac{222}{6}[/tex]

[tex]\mu = 37[/tex]

The population standard deviation is:

[tex]\sigma = \sqrt{\frac{\sum(x - \mu)^2}{n}}[/tex]

This gives:

[tex]\sigma = \sqrt{\frac{(24-37)^2 +(14-37)^2 +(36-37)^2 +(46-37)^2 +(48-37)^2 +(54-37)^2}{6}}[/tex]

[tex]\sigma = \sqrt{\frac{1190}{6}}[/tex]

[tex]\sigma = \sqrt{198.33}[/tex]

[tex]\sigma = 14.1[/tex]

Solving (c): What happens when the dataset is multiplied by k

In (a), we have:

[tex]\sigma = 7.04[/tex]

In (b), when the dataset is doubled,

[tex]\sigma = 14.1[/tex]

This implies that when the dataset is multiplied by k, the population standard deviation will be multiplied by the same factor:

i.e.

[tex]New \sigma = k * \sigma[/tex]

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.