Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
a.
The 95% confidence interval for the proportion of all American adults who have a gun in their home is (0.4066, 0.4734). This means that we are 95% sure that the true population proportions of American adults who have a gun in their home is between these two values.
b.
The confidence level is the probability of the confidence interval containing the population proportion.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
Poll of 850 randomly selected American adults and finds that 44% of those surveyed have a gun in their home.
This means that [tex]n = 850, \pi = 0.44[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.44 - 1.96\sqrt{\frac{0.44*0.56}{850}} = 0.4066[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.44 + 1.96\sqrt{\frac{0.44*0.56}{850}} = 0.4734[/tex]
The 95% confidence interval for the proportion of all American adults who have a gun in their home is (0.4066, 0.4734). This means that we are 95% sure that the true population proportions of American adults who have a gun in their home is between these two values.
b. Explain what is meant by 95% confidence in this context.
The confidence level is the probability of the confidence interval containing the population proportion.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.