Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
a) 47.55
b) 58
c) 47.88
Step-by-step explanation:
Given that the size of the orders is uniformly distributed over the interval
$25 ( a ) to $80 ( b )
a) Determine the value for the first order size generated based on 0.41
parameter for normal distribution is given as ; a = 25, b = 80
size/value of order = a + random number ( b - a )
= 25 + 0.41 ( 80 - 25 )
= 47.55
b) Value of the last order generated based on random number (0.6)
= a + random number ( b - a )
= 25 + 0.6 ( 80 - 25 )
= 25 + 33 = 58
c) Average order size
= ∑ order 1 + order 2 + ----- + order 10 ) / 10
= (47.55 + ...... + 58 ) / 10
= 478.8 / 10 = 47.88
The mail order seed follows a uniform distribution
(a) The value of the first order size generated by 0.41
The given parameters are:
[tex]a = 25[/tex] -- the lower bound
[tex]b = 80[/tex] -- the upper bound
To calculate the required value, we make use of the following order formula
[tex]Value = a + r(b - a)[/tex]
Where r represents the random number.
So, we have:
[tex]Value= 25 + 0.41 \times ( 80 - 25 )[/tex]
Open bracket
[tex]Value= 25 + 0.41 \times 55[/tex]
Evaluate the product
[tex]Value= 25 + 22.55[/tex]
Add the terms
[tex]Value= 47.55[/tex]
Hence, the value for the first order size generated randomly based on random number 0.41 is 47.55
(b) The value of the last order size generated by 0.60
In (a), we have:
[tex]Value = a + r(b - a)[/tex]
So, we have:
[tex]Value= 25 + 0.60 \times ( 80 - 25 )[/tex]
Open bracket
[tex]Value= 25 + 0.60 \times 55[/tex]
Evaluate the product
[tex]Value= 25 + 33[/tex]
Add the terms
[tex]Value= 58[/tex]
Hence, the value for the last order size generated randomly based on random number 0.61 is 58
(c) The average order size
To do this, we calculate the order size from 1 to 10, and then calculate the average value of the 10 orders.
Using a calculator, the sum of the 10 orders is:
[tex]\sum x= 478.8[/tex]
The average order size is then calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
This gives
[tex]\sum x= \frac{478.8}{10}[/tex]
[tex]\sum x= 47.88[/tex]
Hence, the average order size is 47.88
Read more about uniform distribution at:
https://brainly.com/question/25195809
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.