Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The limit of x approaching infinite of a function gives it's horizontal assymptote. We use this to solve the question, getting the following answer:
Because Limit of f (x) as x approaches plus-or-minus infinity = 16, the function has a horizontal asymptote at y = 16.
Horizontal asymptote:
An horizontal asymptote is the value of y given by:
[tex]y = \lim_{x \rightarrow \infty} f(x)[/tex]
In this question:
[tex]f(x) = \frac{16x^2 - 35}{x^2 - 5}[/tex]
The horizontal asymptote is:
[tex]y = \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} \frac{16x^2 - 35}{x^2 - 5}[/tex]
Considering it is a limit of x going to infinite, we just consider the terms with the highest exponents both in the numerator and in the denominator, so:
[tex]y = \lim_{x \rightarrow \infty} \frac{16x^2 - 35}{x^2 - 5} = \lim_{x \rightarrow \infty} \frac{16x^2}{x^2} = \lim_{x \rightarrow \infty} 16 = 16[/tex]
Thus, the correct answer is:
Because Limit of f (x) as x approaches plus-or-minus infinity = 16, the function has a horizontal asymptote at y = 16.
From the graph of the function, given at the end of this answer, you can check that as x goes to infinity, y(green line) approches 16(blue line).
For more on infinite limits, you can check https://brainly.com/question/23335924

Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.