Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer: 19.80 cm
Explanation:
Given
focal length [tex]f=6.14\ cm[/tex] (as focal length is positive, it is converging lens)
Image distance [tex]v=1.5f[/tex]
[tex]v=1.5\times 6.14\\v=9.21\ cm[/tex]
using lens formula
[tex]\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}[/tex]
insert values
[tex]\dfrac{1}{u}=\dfrac{1}{6.14}-\dfrac{1}{8.9}\\\\\dfrac{1}{u}=0.1628-0.1123\\\\\dfrac{1}{u}=0.0505\\\\u=19.80\ cm[/tex]
Thus, the distance of the object is 19.80 cm
The distance of the object will be "19.80 cm".
Given:
- Focal length, f = 6.14 cm
Now,
The image distance will be:
→ [tex]v = 1.5 f[/tex]
[tex]= 1.5\times 6.14[/tex]
[tex]= 9.21 \ cm[/tex]
By using the lens formula, we get
→ [tex]\frac{1}{v} + \frac{1}{u} = \frac{1}{f}[/tex]
By putting the values, we get
→ [tex]\frac{1}{u} = \frac{1}{6.14} - \frac{1}{8.9}[/tex]
[tex]\frac{1}{u} = 0.1628-0.1123[/tex]
[tex]\frac{1}{u} = 0.0505[/tex]
[tex]u = 19.80 \ cm[/tex]
Thus the answer above is correct.
Learn more about focal length here:
https://brainly.com/question/25020197
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.