Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
[tex]f(x)=\dfrac{(\ln x)^2}{2x}\\\\
f'(x)=\dfrac{2\ln x\cdot \dfrac{1}{x}\cdot2x-(\ln x)^2\cdot2}{(2x)^2}\\
f'(x)=\dfrac{2\ln x(2-\ln x)}{4x^2}\\
f'(x)=-\dfrac{\ln x(\ln x-2)}{2x^2}[/tex]
[tex]f(x)=\frac{(lnx)^2}{2x};\ D_f:x\in\mathbb{R^+}\\\\use:\left[\frac{f(x)}{g(x)}\right]'=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}\\\\f'(x)=\frac{[(lnx)^2]'\cdot2x-(lnx)^2\cdot(2x)'}{(2x)^2}=(*)\\\\\ [(lnx)^2]'=2lnx\cdot\frac{1}{x}=\frac{2lnx}{x}\\\\(2x)'=2\\\\(*)=\frac{\frac{2lnx}{x}\cdot2x-(lnx)^2\cdot2}{4x^2}=\frac{4lnx-2(lnx)^2}{4x^2}=\frac{[4lnx-2(lnx)^2]:2}{4x^2:2}=\frac{2lnx-(lnx)^2}{2x^2}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.