lotfi
Answered

Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

f(x)=(lnx)²/2x
give f '(x)=??

Sagot :

[tex]f(x)=\dfrac{(\ln x)^2}{2x}\\\\ f'(x)=\dfrac{2\ln x\cdot \dfrac{1}{x}\cdot2x-(\ln x)^2\cdot2}{(2x)^2}\\ f'(x)=\dfrac{2\ln x(2-\ln x)}{4x^2}\\ f'(x)=-\dfrac{\ln x(\ln x-2)}{2x^2}[/tex]
[tex]f(x)=\frac{(lnx)^2}{2x};\ D_f:x\in\mathbb{R^+}\\\\use:\left[\frac{f(x)}{g(x)}\right]'=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}\\\\f'(x)=\frac{[(lnx)^2]'\cdot2x-(lnx)^2\cdot(2x)'}{(2x)^2}=(*)\\\\\ [(lnx)^2]'=2lnx\cdot\frac{1}{x}=\frac{2lnx}{x}\\\\(2x)'=2\\\\(*)=\frac{\frac{2lnx}{x}\cdot2x-(lnx)^2\cdot2}{4x^2}=\frac{4lnx-2(lnx)^2}{4x^2}=\frac{[4lnx-2(lnx)^2]:2}{4x^2:2}=\frac{2lnx-(lnx)^2}{2x^2}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.