Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Gravitational Potential Energy Lost During the Fall
[tex]\text{Gravitational Potential Energy } = mgh[/tex]
[tex]= (0.06)(10)(1.5)[/tex]
[tex]= 0.9 \text{J}[/tex]
Kinetic Energy Before Impact
As the ball falls, the gravitational energy is converted to kinetic energy. Just before impact, when the ball is just touching the ground, the gravitational potential energy is 0 (as the height above the ground is essentially 0), meaning that all of the gravitational potential energy has been converted. This means that the kinetic energy at this point is 0.9J.
Speed of the Ball Before Impact
[tex]u = 0[/tex]
[tex]a = g = 10 \text{ms}^{-2}[/tex]
[tex]s = 1.5 \text{m}[/tex]
[tex]v^2 = u^2 + 2as[/tex]
[tex]\implies v = \sqrt{u^2 + 2as}[/tex]
[tex]= \sqrt{0^2 + 2(10)(1.5)}[/tex]
[tex]= \sqrt{30} \text{ ms}^{-1}[/tex]
[tex]= 5.5 \text{ms}^{-1}\text{to 2s.f.}[/tex]
Gravitational Potential Energy Gained After Rebound
[tex]\text{Gravitational Potential Energy } = mgh[/tex]
[tex]= (0.06)(10)(1.3)[/tex]
[tex]= 0.78 \text{J}[/tex]
[tex]\text{Gravitational Potential Energy } = mgh[/tex]
[tex]= (0.06)(10)(1.5)[/tex]
[tex]= 0.9 \text{J}[/tex]
Kinetic Energy Before Impact
As the ball falls, the gravitational energy is converted to kinetic energy. Just before impact, when the ball is just touching the ground, the gravitational potential energy is 0 (as the height above the ground is essentially 0), meaning that all of the gravitational potential energy has been converted. This means that the kinetic energy at this point is 0.9J.
Speed of the Ball Before Impact
[tex]u = 0[/tex]
[tex]a = g = 10 \text{ms}^{-2}[/tex]
[tex]s = 1.5 \text{m}[/tex]
[tex]v^2 = u^2 + 2as[/tex]
[tex]\implies v = \sqrt{u^2 + 2as}[/tex]
[tex]= \sqrt{0^2 + 2(10)(1.5)}[/tex]
[tex]= \sqrt{30} \text{ ms}^{-1}[/tex]
[tex]= 5.5 \text{ms}^{-1}\text{to 2s.f.}[/tex]
Gravitational Potential Energy Gained After Rebound
[tex]\text{Gravitational Potential Energy } = mgh[/tex]
[tex]= (0.06)(10)(1.3)[/tex]
[tex]= 0.78 \text{J}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.